Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Cell Rep ; 43(4): 114062, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38588339

ABSTRACT

The role of T cell receptor (TCR) diversity in infectious disease susceptibility is not well understood. We use a systems immunology approach on three cohorts of herpes zoster (HZ) patients and controls to investigate whether TCR diversity against varicella-zoster virus (VZV) influences the risk of HZ. We show that CD4+ T cell TCR diversity against VZV glycoprotein E (gE) and immediate early 63 protein (IE63) after 1-week culture is more restricted in HZ patients. Single-cell RNA and TCR sequencing of VZV-specific T cells shows that T cell activation pathways are significantly decreased after stimulation with VZV peptides in convalescent HZ patients. TCR clustering indicates that TCRs from HZ patients co-cluster more often together than TCRs from controls. Collectively, our results suggest that not only lower VZV-specific TCR diversity but also reduced functional TCR affinity for VZV-specific proteins in HZ patients leads to lower T cell activation and consequently affects the susceptibility for viral reactivation.


Subject(s)
Herpes Zoster , Herpesvirus 3, Human , Lymphocyte Activation , Receptors, Antigen, T-Cell , Humans , Herpes Zoster/immunology , Herpes Zoster/virology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Lymphocyte Activation/immunology , Herpesvirus 3, Human/immunology , Female , Middle Aged , Male , CD4-Positive T-Lymphocytes/immunology , Aged , Adult , Epitopes, T-Lymphocyte/immunology
2.
J Infect Dis ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195164

ABSTRACT

The varicella-zoster virus (VZV) infects over 95% of the population. VZV reactivation causes herpes zoster (HZ), known as shingles, primarily affecting the elderly and immunocompromised individuals. However, HZ can also occur in otherwise healthy individuals. We analyzed the immune signature and risk profile in HZ patients using a genome-wide association study across different UK Biobank HZ cohorts. Additionally, we conducted one of the largest HZ HLA association studies to date, coupled with transcriptomic analysis of pathways underlying HZ susceptibility. Our findings highlight the significance of the MHC locus for HZ development, identifying five protective and four risk HLA alleles. This demonstrates that HZ susceptibility is largely governed by variations in the MHC. Furthermore, functional analyses revealed the upregulation of type I interferon and adaptive immune responses. These findings provide fresh molecular insights into the pathophysiology and the activation of innate and adaptive immune responses triggered by symptomatic VZV reactivation.

3.
Transpl Int ; 36: 11321, 2023.
Article in English | MEDLINE | ID: mdl-37560072

ABSTRACT

Solid phase immunoassays improved the detection and determination of the antigen-specificity of donor-specific antibodies (DSA) to human leukocyte antigens (HLA). The widespread use of SPI in kidney transplantation also introduced new clinical dilemmas, such as whether patients should be monitored for DSA pre- or post-transplantation. Pretransplant screening through SPI has become standard practice and DSA are readily determined in case of suspected rejection. However, DSA monitoring in recipients with stable graft function has not been universally established as standard of care. This may be related to uncertainty regarding the clinical utility of DSA monitoring as a screening tool. This consensus report aims to appraise the clinical utility of DSA monitoring in recipients without overt signs of graft dysfunction, using the Wilson & Junger criteria for assessing the validity of a screening practice. To assess the evidence on DSA monitoring, the European Society for Organ Transplantation (ESOT) convened a dedicated workgroup, comprised of experts in transplantation nephrology and immunology, to review relevant literature. Guidelines and statements were developed during a consensus conference by Delphi methodology that took place in person in November 2022 in Prague. The findings and recommendations of the workgroup on subclinical DSA monitoring are presented in this article.


Subject(s)
Kidney Transplantation , Organ Transplantation , Humans , Graft Rejection , Isoantibodies , Kidney , HLA Antigens , Graft Survival , Transplant Recipients , Tissue Donors , Histocompatibility Testing , Retrospective Studies
4.
J Am Soc Nephrol ; 33(11): 2026-2039, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36316096

ABSTRACT

BACKGROUND: No validated system currently exists to realistically characterize the chronic pathology of kidney transplants that represents the dynamic disease process and spectrum of disease severity. We sought to develop and validate a tool to describe chronicity and severity of renal allograft disease and integrate it with the evaluation of disease activity. METHODS: The training cohort included 3549 kidney transplant biopsies from an observational cohort of 937 recipients. We reweighted the chronic histologic lesions according to their time-dependent association with graft failure, and performed consensus k-means clustering analysis. Total chronicity was calculated as the sum of the weighted chronic lesion scores, scaled to the unit interval. RESULTS: We identified four chronic clusters associated with graft outcome, based on the proportion of ambiguous clustering. The two clusters with the worst survival outcome were determined by interstitial fibrosis and tubular atrophy (IFTA) and by transplant glomerulopathy. The chronic clusters partially overlapped with the existing Banff IFTA classification (adjusted Rand index, 0.35) and were distributed independently of the acute lesions. Total chronicity strongly associated with graft failure (hazard ratio [HR], 8.33; 95% confidence interval [CI], 5.94 to 10.88; P<0.001), independent of the total activity scores (HR, 5.01; 95% CI, 2.83 to 7.00; P<0.001). These results were validated on an external cohort of 4031 biopsies from 2054 kidney transplant recipients. CONCLUSIONS: The evaluation of total chronicity provides information on kidney transplant pathology that complements the estimation of disease activity from acute lesion scores. Use of the data-driven algorithm used in this study, called RejectClass, may provide a holistic and quantitative assessment of kidney transplant injury phenotypes and severity.


Subject(s)
Kidney Diseases , Kidney Transplantation , Humans , Kidney Transplantation/methods , Graft Survival , Graft Rejection/pathology , Kidney/pathology , Biopsy , Kidney Diseases/pathology , Complement System Proteins , Allografts/pathology , Phenotype
5.
Front Immunol ; 13: 931153, 2022.
Article in English | MEDLINE | ID: mdl-35928826

ABSTRACT

Pulmonary alveolar proteinosis (PAP) is a rare, diffuse lung disorder characterized by surfactant accumulation in the small airways due to defective clearance by alveolar macrophages, resulting in impaired gas exchange. Whole lung lavage is the current standard of care treatment for PAP. Lung transplantation is an accepted treatment option when whole lung lavage or other experimental treatment options are ineffective, or in case of extensive pulmonary fibrosis secondary to PAP. A disadvantage of lung transplantation is recurrence of PAP in the transplanted lungs, especially in hereditary PAP. The hereditary form of PAP is an ultra-rare condition caused by genetic mutations in genes encoding for the granulocyte macrophage-colony stimulating factor (GM-CSF) receptor, and intrinsically affects bone marrow derived-monocytes, which differentiate into macrophages in the lung. Consequently, these macrophages typically display disrupted GM-CSF receptor-signaling, causing defective surfactant clearance. Bone marrow/hematopoietic stem cell transplantation may potentially reverse the lung disease in hereditary PAP. In patients with hereditary PAP undergoing lung transplantation, post-lung transplant recurrence of PAP may theoretically be averted by subsequent hematopoietic stem cell transplantation, which results in a graft-versus-disease (PAP) effect, and thus could improve long-term outcome. We describe the successful long-term post-transplant outcome of a unique case of end-stage respiratory failure due to hereditary PAP-induced pulmonary fibrosis, successfully treated by bilateral lung transplantation and subsequent allogeneic hematopoietic stem cell transplantation. Our report supports treatment with serial lung and hematopoietic stem cell transplantation to improve quality of life and prolong survival, without PAP recurrence, in selected patients with end-stage hereditary PAP.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lung Transplantation , Pulmonary Alveolar Proteinosis , Pulmonary Fibrosis , Pulmonary Surfactants , Humans , Pulmonary Alveolar Proteinosis/drug therapy , Pulmonary Alveolar Proteinosis/therapy , Pulmonary Surfactants/therapeutic use , Quality of Life , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Surface-Active Agents/therapeutic use
6.
Clin J Am Soc Nephrol ; 17(8): 1204-1215, 2022 08.
Article in English | MEDLINE | ID: mdl-35649719

ABSTRACT

BACKGROUND AND OBJECTIVES: The histology of antibody-mediated rejection after kidney transplantation is observed frequently in the absence of detectable donor-specific anti-HLA antibodies. Although there is an active interest in the role of non-HLA antibodies in this phenotype, it remains unknown whether HLA mismatches play an antibody-independent role in this phenotype of microcirculation inflammation. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: To study this, we used the tools HLAMatchmaker, three-dimensional electrostatic mismatch score, HLA solvent accessible amino acid mismatches, and mismatched donor HLA-derived T cell epitope targets to determine the degree of HLA molecular mismatches in 893 kidney transplant recipients with available biopsy follow-up. Multivariable Cox proportional hazards models were applied to quantify the cause-specific hazard ratios of the different types of HLA mismatch scores for developing antibody-mediated rejection or histology of antibody-mediated rejection in the absence of donor-specific anti-HLA antibodies. In all survival analyses, the patients were censored at the time of the last biopsy. RESULTS: In total, 121 (14%) patients developed histology of antibody-mediated rejection in the absence of donor-specific anti-HLA antibodies, of which 44 (36%) patients had concomitant T cell-mediated rejection. In multivariable Cox analysis, all different calculations of the degree of HLA mismatch associated with developing histology of antibody-mediated rejection in the absence of donor-specific anti-HLA antibodies. This association was dependent neither on the presence of missing self (potentially related to natural killer cell activation) nor on the formation of de novo HLA antibodies. Also, glomerulitis and complement C4d deposition in peritubular capillaries associated with the degree of HLA mismatch in the absence of anti-HLA antibodies. CONCLUSIONS: The histology of antibody-mediated rejection and its defining lesions are also observed in patients without circulating anti-HLA antibodies and relate to the degree of HLA mismatch.


Subject(s)
Graft Rejection , Kidney Transplantation , Antibodies , Antilymphocyte Serum , Graft Survival , HLA Antigens , Humans , Kidney Transplantation/adverse effects , Tissue Donors , Transplant Recipients
7.
Am J Kidney Dis ; 80(6): 718-729.e1, 2022 12.
Article in English | MEDLINE | ID: mdl-35690154

ABSTRACT

RATIONALE & OBJECTIVE: The relationship between human leukocyte antigen (HLA) molecular mismatches and T-cell-mediated rejection (TCMR) is unknown. We investigated the associations between the different donor HLA-derived T-cell targets and the occurrence of TCMR and borderline histologic changes suggestive of TCMR after kidney transplantation. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: All kidney transplant recipients at a single center between 2004 and 2013 with available biopsy data and a DNA sample for high-resolution HLA donor/recipient typing (N = 893). EXPOSURE: Scores calculated by the HLA matching algorithm PIRCHE-II and HLA eplet mismatches. OUTCOME: TCMR, borderline changes suggestive of TCMR, and allograft failure. ANALYTICAL APPROACH: Multivariable cause-specific hazards models were fit to characterize the association between HLA epitopes targets and study outcomes. RESULTS: We found 277 patients developed TCMR, and 134 developed only borderline changes suggestive of TCMR on at least 1 biopsy. In multivariable analyses, only the PIRCHE-II scores for HLA-DRB1 and HLA-DQB1 were independently associated with the occurrence of TCMR and with allograft failure; this was not the case for HLA class I molecules. If restricted to rejection episodes within the first 3 months after transplantation, only the T-cell epitope targets originating from the donor's HLA-DRB1 and HLA-DQB1, but not class I molecules, were associated with the early acute TCMR. Also, the median PIRCHE-II score for HLA class II was statistically different between the patients with TCMR compared to the patients without TCMR (129 [IQR, 60-240] vs 201 [IQR, 96-298], respectively; P < 0.0001). These differences were not observed for class I PIRCHE-II scores. LIMITATIONS: Observational clinical data and residual confounding. CONCLUSIONS: In the absence of HLA-DSA, HLA class II but not class I mismatches are associated with early episodes of acute TCMR and allograft failure. This suggests that current immunosuppressive therapies are largely able to abort the most deleterious HLA class I-directed alloimmune processes; however, alloresponses against HLA-DRB1 and HLA-DQB1 molecular mismatches remain insufficiently suppressed. PLAIN-LANGUAGE SUMMARY: Genetic differences in the human leukocyte antigen (HLA) complex between kidney transplant donors and recipients play a central role in T-cell-mediated rejection (TCMR), which can lead to failure of the transplanted kidney. Evaluating this genetic disparity (mismatch) in the HLA complex at the molecular (epitope) level could contribute to better prediction of the immune response to the donor organ posttransplantation. We investigated the associations of the different donor HLA-derived T-cell epitope targets and scores obtained from virtual crossmatch algorithms with the occurrence of TCMR, borderline TCMR, and graft failure after kidney transplantation after taking into account the influence of donor-specific anti-HLA antibodies. This study illustrates the greater importance of the molecular mismatches in class II molecules compared to class I HLA molecules.


Subject(s)
Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Epitopes, T-Lymphocyte , Graft Rejection/epidemiology , Graft Survival , Retrospective Studies , HLA-DRB1 Chains , T-Lymphocytes , HLA Antigens/genetics , Histocompatibility Testing
8.
Front Immunol ; 13: 809059, 2022.
Article in English | MEDLINE | ID: mdl-35250981

ABSTRACT

BACKGROUND: Many kidney allografts fail due to the occurrence of antibody-mediated rejection (ABMR), related to donor-specific anti-HLA antibodies (HLA-DSA). However, the histology of ABMR can also be observed in patients without HLA-DSA. While some non-HLA antibodies have been related to the histology of ABMR, it is not well known to what extent they contribute to kidney allograft injury. Here we aimed to investigate the role of 82 different non-HLA antibodies in the occurrence of histology of ABMR after kidney transplantation. METHODS: We included all patients who underwent kidney transplantation between 2004-2013 in a single center and had biobanked serum. Pre- and post-transplant sera (n=2870) were retrospectively tested for the presence of 82 different non-HLA antibodies using a prototype bead assay on Luminex (Immucor, Inc). A ratio was calculated between the measured MFI value and the cut-off MFI defined by the vendor for each non-HLA target. RESULTS: 874 patients had available pretransplant sera and were included in this analysis. Of them, 133 (15.2%) received a repeat kidney allograft, and 100 (11.4%) had pretransplant HLA-DSA. In total, 204 (23.3%) patients developed histology of ABMR after kidney transplantation. In 79 patients (38.7%) the histology of ABMR was explained by pretransplant or de novo HLA-DSA. The multivariable Cox analysis revealed that only the broadly non-HLA sensitized (number of positive non-HLA antibodies) patients and those with the highest total strength of the non-HLA antibodies (total ratios of the positive non-HLA antibodies) were independently associated with increased rates of histology of ABMR after transplantation. Additionally, independent associations were found for antibodies against TUBB (HR=2.40; 95% CI 1.37 - 4.21, p=0.002), Collagen III (HR=1.67; 95% CI 1.08 - 2.58, p=0.02), VCL (HR=2.04; 95% CI 1.12 - 3.71, p=0.02) and STAT6 (HR=1.47; 95% CI 1.01 - 2.15, p=0.04). The overall posttransplant non-HLA autoreactivity was not associated with increased rates of ABMRh. CONCLUSIONS: This study shows that patients highly and broadly sensitized against non-HLA targets are associated with an increased risk of ABMR histology after kidney transplantations in the absence of HLA-DSA. Also, some pretransplant non-HLA autoantibodies are individually associated with increased rates of ABMR histology. However, whether these associations are clinically relevant and represent causality, warrants further studies.


Subject(s)
Kidney Transplantation , Graft Rejection , HLA Antigens , Humans , Isoantibodies , Kidney Transplantation/adverse effects , Retrospective Studies
9.
Front Immunol ; 13: 818569, 2022.
Article in English | MEDLINE | ID: mdl-35281018

ABSTRACT

Despite the critical role of cytokines in allograft rejection, the relation of peripheral blood cytokine profiles to clinical kidney transplant rejection has not been fully elucidated. We assessed 28 cytokines through multiplex assay in 293 blood samples from kidney transplant recipients at time of graft dysfunction. Unsupervised hierarchical clustering identified a subset of patients with increased pro-inflammatory cytokine levels. This patient subset was hallmarked by a high prevalence (75%) of donor-specific anti-human leukocyte antigen antibodies (HLA-DSA) and histological rejection (70%) and had worse graft survival compared to the group with low cytokine levels (HLA-DSA in 1.7% and rejection in 33.7%). Thirty percent of patients with high pro-inflammatory cytokine levels and HLA-DSA did not have histological rejection. Exploring the cellular origin of these cytokines, we found a corresponding expression in endothelial cells, monocytes, and natural killer cells in single-cell RNASeq data from kidney transplant biopsies. Finally, we confirmed secretion of these cytokines in HLA-DSA-mediated cross talk between endothelial cells, NK cells, and monocytes. In conclusion, blood pro-inflammatory cytokines are increased in kidney transplant patients with HLA-DSA, even in the absence of histology of rejection. These observations challenge the concept that histology is the gold standard for identification of ongoing allo-immune activation after transplantation.


Subject(s)
Kidney Transplantation , Antilymphocyte Serum , Cytokines , Endothelial Cells , Graft Rejection , Humans , Isoantibodies
10.
Elife ; 112022 01 25.
Article in English | MEDLINE | ID: mdl-35074048

ABSTRACT

Antigen recognition through the T cell receptor (TCR) αß heterodimer is one of the primary determinants of the adaptive immune response. Vaccines activate naïve T cells with high specificity to expand and differentiate into memory T cells. However, antigen-specific memory CD4 T cells exist in unexposed antigen-naïve hosts. In this study, we use high-throughput sequencing of memory CD4 TCRß repertoire and machine learning to show that individuals with preexisting vaccine-reactive memory CD4 T cell clonotypes elicited earlier and higher antibody titers and mounted a more robust CD4 T cell response to hepatitis B vaccine. In addition, integration of TCRß sequence patterns into a hepatitis B epitope-specific annotation model can predict which individuals will have an early and more vigorous vaccine-elicited immunity. Thus, the presence of preexisting memory T cell clonotypes has a significant impact on immunity and can be used to predict immune responses to vaccination.


Immune cells called CD4 T cells help the body build immunity to infections caused by bacteria and viruses, or after vaccination. Receptor proteins on the outside of the cells recognize pathogens, foreign molecules called antigens, or vaccine antigens. Vaccine antigens are usually inactivated bacteria or viruses, or fragments of these pathogens. After recognizing an antigen, CD4 T cells develop into memory CD4 T cells ready to defend against future infections with the pathogen. People who have never been exposed to a pathogen, or have never been vaccinated against it, may nevertheless have preexisting memory cells ready to defend against it. This happens because CD4 T cells can recognize multiple targets, which enables the immune system to be ready to defend against both new and familiar pathogens. Elias, Meysman, Bartholomeus et al. wanted to find out whether having preexisting memory CD4 T cells confers an advantage for vaccine-induced immunity. Thirty-four people who were never exposed to hepatitis B or vaccinated against it participated in the study. These individuals provided blood samples before vaccination, with 2 doses of the hepatitis B vaccine, and at 3 time points afterward. Using next generation immune sequencing and machine learning techniques, Elias et al. analyzed the individuals' memory CD4 T cells before and after vaccination. The experiments showed that preexisting memory CD4 T cells may determine vaccination outcomes, and people with more preexisting memory cells develop quicker and stronger immunity after vaccination against hepatitis B. This information may help scientists to better understand how people develop immunity to pathogens. It may guide them develop better vaccines or predict who will develop immunity after vaccination.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Hepatitis B/prevention & control , Adult , Hepatitis B Vaccines , Humans , Middle Aged , Receptors, Antigen, T-Cell, alpha-beta , Vaccination , Young Adult
11.
JAMA Netw Open ; 4(12): e2141617, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34967877

ABSTRACT

Importance: Like other clinical biomarkers, trajectories of estimated glomerular filtration rate (eGFR) after kidney transplant are characterized by intra-individual variability. These fluctuations hamper the distinction between alarming graft functional deterioration or harmless fluctuation within the patient-specific expected reference range of eGFR. Objective: To determine whether a deep learning model could accurately predict the patient-specific expected reference range of eGFR after kidney transplant. Design, Setting, and Participants: A multicenter diagnostic study consisted of a derivation cohort of 933 patients who received a kidney transplant between 2004 and 2013 with 100 867 eGFR measurements from University Hospitals Leuven, Belgium, and 2 independent test cohorts: with 39 999 eGFR measurements from 1 170 patients, 1 from University Hospitals Leuven, Belgium, receiving transplants between 2013 and 2018 and 1 from Hannover Medical School, Germany, receiving transplants between 2003 and 2007. Patients receiving a single kidney transplant, with consecutive eGFR measurements were included. Data were analyzed from February 2019 to April 2021. Exposures: In the derivation cohort 100 867 eGFR measurements were available for analysis and 39 999 eGFR measurements from the independent test cohorts. Main Outcomes and Measures: A sequence-to-sequence model was developed for prediction of a patient-specific expected range of eGFR, based on previous eGFR values. The primary outcome was the performance of the deep learning sequence-to-sequence model in the 2 independent cohorts. Results: In this diagnostic study, a total of 933 patients in the training sets (mean [SD] age, 53.5 [13.3] years; 570 male [61.1%]) and 1170 patients in the independent test sets (cohort 1 [n = 621]: mean [SD] age, 58.5 [12.1] years; 400 male [64.4%]; cohort 2 [n = 549]: mean [SD] age, 50.1 [13.0] years; 316 male [57.6%]) who received a single kidney transplant most frequently from deceased donors, the sequence-to-sequence models accurately predicted future patient-specific eGFR trajectories within the first 3 months after transplant, based on the previous graft eGFR values (root mean square error, 6.4-8.9 mL/min/1.73 m2). The sequence-to-sequence model predictions outperformed the more conventional autoregressive integrated moving average prediction model, at all input/output number of eGFR values. Conclusions and Relevance: In this diagnostic study, a sequence-to-sequence deep learning model was developed and validated for individual forecasting of kidney transplant function. The patient-specific sequence predictions could be used in clinical practice to guide physicians on deviations from the expected intra-individual variability, rather than relating the individual results to the reference range of the healthy population.


Subject(s)
Decision Making , Deep Learning , Glomerular Filtration Rate , Kidney Transplantation , Patient-Specific Modeling , Cohort Studies , Female , Forecasting , Humans , Male , Middle Aged , Reproducibility of Results
12.
Transpl Int ; 34(10): 1824-1836, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34197662

ABSTRACT

The interplay between donor-specific anti-HLA antibodies (HLA-DSA), histology of active antibody-mediated rejection (aABMRh ), transplant glomerulopathy (cg), and graft failure in kidney transplantation remains insufficiently understood. We performed a single-center cohort study (n = 1000) including 2761 protocol and 833 indication biopsies. Patients with pretransplant HLA-DSA were more prone to develop aABMRh (OR 22.7, 95% CI, 11.8-43.7, P < 0.001), cg (OR 5.76, 95% CI, 1.67-19.8, P = 0.006), and aABMRh/cg (OR 19.5, 95% CI, 10.6-35.9, P < 0.001). The negative impact of pre-transplant HLA-DSA on graft survival (HR 2.12, 95% CI, 1.41-3.20, P < 0.001) was partially mediated through aABMRh and cg occurrence. When adjusted for time-dependent HLA-DSA (HR 4.03, 95% CI, 2.21-7.15, P = 0.002), graft failure was only affected by aABMRh when cg was evident. In HLA-DSA negative patients, aABMRh was associated with impaired graft outcome only when evolving to cg (HR 1.32, 95% CI, 1.07-1.61, P = 0.008). We conclude that the kinetics of HLA-DSA are important to estimate the rate of graft failure, and that histological follow-up is necessary to discover, often subclinical, ABMR and cg. In the absence of HLA-DSA, patients experience similar histological lesions and the evolution to transplant glomerulopathy associates with impaired graft outcome.


Subject(s)
Graft Rejection , Kidney Transplantation , Cohort Studies , Graft Survival , HLA Antigens , Humans , Isoantibodies , Tissue Donors
13.
J Am Soc Nephrol ; 32(8): 2070-2082, 2021 08.
Article in English | MEDLINE | ID: mdl-34301794

ABSTRACT

BACKGROUND: Circulating anti-HLA donor-specific antibodies (HLA-DSA) are often absent in kidney transplant recipients with microvascular inflammation (MVI). Missing self, the inability of donor endothelial cells to provide HLA I-mediated signals to inhibitory killer cell Ig-like receptors (KIRs) on recipient natural killer cells, can cause endothelial damage in vitro, and has been associated with HLA-DSA-negative MVI. However, missing self's clinical importance as a nonhumoral trigger of allograft rejection remains unclear. METHODS: In a population-based study of 924 consecutive kidney transplantations between March 2004 and February 2013, we performed high-resolution donor and recipient HLA typing and recipient KIR genotyping. Missing self was defined as the absence of A3/A11, Bw4, C1, or C2 donor genotype, with the presence of the corresponding educated recipient inhibitory KIR gene. RESULTS: We identified missing self in 399 of 924 transplantations. Co-occurrence of missing self types had an additive effect in increasing MVI risk, with a threshold at two concurrent types (hazard ratio [HR], 1.78; 95% confidence interval [95% CI], 1.26 to 2.53), independent of HLA-DSA (HR, 5.65; 95% CI, 4.01 to 7.96). Missing self and lesions of cellular rejection were not associated. No HLA-DSAs were detectable in 146 of 222 recipients with MVI; 28 of the 146 had at least two missing self types. Missing self associated with transplant glomerulopathy after MVI (HR, 2.51; 95% CI, 1.12 to 5.62), although allograft survival was better than with HLA-DSA-associated MVI. CONCLUSION: Missing self specifically and cumulatively increases MVI risk after kidney transplantation, independent of HLA-DSA. Systematic evaluation of missing self improves understanding of HLA-DSA-negative MVI and might be relevant for improved diagnostic classification and patient risk stratification.


Subject(s)
Graft Rejection/immunology , HLA Antigens/genetics , HLA Antigens/immunology , Killer Cells, Natural/immunology , Receptors, KIR/genetics , Vasculitis/genetics , Adult , Aged , Antibodies/blood , Female , Genotype , Graft Survival , HLA-A11 Antigen/genetics , HLA-A11 Antigen/immunology , HLA-A3 Antigen/genetics , HLA-A3 Antigen/immunology , HLA-B Antigens/genetics , HLA-B Antigens/immunology , HLA-C Antigens/genetics , HLA-C Antigens/immunology , Histocompatibility Testing , Humans , Kidney Transplantation , Male , Microvessels , Middle Aged , Receptors, KIR2DL2/genetics , Receptors, KIR2DL3/genetics , Tissue Donors , Transplant Recipients , Vasculitis/complications
15.
Kidney Int ; 100(2): 401-414, 2021 08.
Article in English | MEDLINE | ID: mdl-33675843

ABSTRACT

Transplant glomerulopathy is established as a hallmark of chronic antibody-mediated rejection in kidney transplant patients with donor-specific HLA antibodies (HLA-DSA). The clinical importance of transplant glomerulopathy in the absence of HLA-DSA is not well established. To help define this, 954 patients (encompassing 3744 biopsies) who underwent kidney transplantation 2004-2013 were studied with retrospective high-resolution HLA genotyping of both donors and recipients. The risk factors, histopathological appearance and prognosis of cases with transplant glomerulopathy in the absence of HLA-DSA were compared to those cases with HLA-DSA, and the impact of the PIRCHE-II score and eplet mismatches on development of transplant glomerulopathy evaluated. In this cohort, 10.3% developed transplant glomerulopathy, on average 3.2 years post-transplant. At the time of glomerulopathy, 23.5% had persistent pre-transplant or de novo HLA-DSA, while 76.5% were HLA-DSA negative. Only HLA-DSA was identified as a risk factor for glomerulopathy development as eplet mismatches and the PIRCHE-II score did not associate. HLA-DSA negative biopsies with glomerulopathy had less interstitial inflammation, less glomerulitis, and less C4d deposition in the peritubular capillaries compared to the HLA-DSA positive biopsies with glomerulopathy. While graft function was comparable between the two groups, HLA-DSA positive glomerulopathy was associated with a significantly higher risk of graft failure compared to HLA-DSA negative glomerulopathy (Hazard Ratio 3.84; 95% confidence interval 1.94-7.59). Landmark analysis three-years post-transplant showed that HLA-DSA negative patients with glomerulopathy still had a significant increased risk of graft failure compared to patients negative for glomerulopathy (2.62; 1.46-4.72). Thus, transplant glomerulopathy often occurs in the absence of HLA-DSA, independent of HLA molecular mismatches, and represents a different phenotype with less concomitant inflammation and better graft survival compared to that developed in the presence of HLA-DSA.


Subject(s)
Graft Rejection , Kidney Transplantation , Graft Rejection/epidemiology , Graft Survival , HLA Antigens , Humans , Isoantibodies , Kidney Transplantation/adverse effects , Retrospective Studies , Risk Factors , Tissue Donors
16.
J Am Soc Nephrol ; 32(5): 1084-1096, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33687976

ABSTRACT

BACKGROUND: Over the past decades, an international group of experts iteratively developed a consensus classification of kidney transplant rejection phenotypes, known as the Banff classification. Data-driven clustering of kidney transplant histologic data could simplify the complex and discretionary rules of the Banff classification, while improving the association with graft failure. METHODS: The data consisted of a training set of 3510 kidney-transplant biopsies from an observational cohort of 936 recipients. Independent validation of the results was performed on an external set of 3835 biopsies from 1989 patients. On the basis of acute histologic lesion scores and the presence of donor-specific HLA antibodies, stable clustering was achieved on the basis of a consensus of 400 different clustering partitions. Additional information on kidney-transplant failure was introduced with a weighted Euclidean distance. RESULTS: Based on the proportion of ambiguous clustering, six clinically meaningful cluster phenotypes were identified. There was significant overlap with the existing Banff classification (adjusted rand index, 0.48). However, the data-driven approach eliminated intermediate and mixed phenotypes and created acute rejection clusters that are each significantly associated with graft failure. Finally, a novel visualization tool presents disease phenotypes and severity in a continuous manner, as a complement to the discrete clusters. CONCLUSIONS: A semisupervised clustering approach for the identification of clinically meaningful novel phenotypes of kidney transplant rejection has been developed and validated. The approach has the potential to offer a more quantitative evaluation of rejection subtypes and severity, especially in situations in which the current histologic categorization is ambiguous.


Subject(s)
Graft Rejection/pathology , Kidney Diseases/pathology , Kidney Diseases/surgery , Kidney Transplantation/statistics & numerical data , Acute Disease , Adult , Aged , Cluster Analysis , Cohort Studies , Female , Graft Rejection/epidemiology , Graft Survival , Humans , Kidney Diseases/mortality , Kidney Transplantation/adverse effects , Kidney Transplantation/mortality , Male , Middle Aged , Phenotype , Reproducibility of Results
17.
Transpl Immunol ; 65: 101287, 2021 04.
Article in English | MEDLINE | ID: mdl-32194154

ABSTRACT

BACKGROUND: The impact of HLA-DP mismatches on renal allograft outcome is still poorly understood and is suggested to be less than that of the other HLA loci. The common association of HLA-DP donor-specific antibodies (DSA) with other DSA obviates the evaluation of the actual effect of HLA-DP DSA. METHODS: From a large multicenter data collection, we retrospectively evaluated the significance of HLA-DP DSA on transplant outcome and the immunogenicity of HLA-DP eplet mismatches with respect to the induction of HLA-DP DSA. Furthermore, we evaluated the association between the MFI of HLA-DP antibodies detected in Luminex assays and the outcome of flowcytometric/complement-dependent cytotoxicity (CDC) crossmatches. RESULTS: In patients with isolated pretransplant HLA-DP antibodies (N = 13), 6 experienced antibody-mediated rejection (AMR) and 3 patients lost their graft. In HLAMatchmaker analysis of HLA-DP mismatches (N = 72), HLA-DP DSA developed after cessation of immunosuppression in all cases with 84DEAV (N = 14), in 86% of cases with 85GPM (N = 6/7), in 50% of cases with 56E (N = 6/12) and in 40% of cases with 56A mismatch (N = 2/5). Correlation analysis between isolated HLA-DP DSA MFI and crossmatches (N = 90) showed negative crossmatch results with HLA-DP DSA MFI <2000 (N = 14). Below an MFI of 10,000 CDC crossmatches were also negative (N = 33). Above these MFI values both positive (N = 35) and negative (N = 16) crossmatch results were generated. CONCLUSIONS: Isolated HLA-DP DSA are rare, yet constitute a significant risk for AMR. We identified high-risk eplet mismatches that can lead to HLA-DP DSA formation. We therefore recommend HLA-DP typing to perform HLA-DP DSA analysis before transplantation. HLA-DP DSA with high MFI were not always correlated with positive crossmatch results.


Subject(s)
HLA-DP Antigens , Kidney Transplantation , Graft Rejection , HLA Antigens , Histocompatibility Testing , Humans , Isoantibodies , Retrospective Studies , Tissue Donors
18.
Am J Transplant ; 21(7): 2413-2423, 2021 07.
Article in English | MEDLINE | ID: mdl-33382185

ABSTRACT

The Banff classification for antibody-mediated rejection (ABMR) has undergone important changes, mainly by inclusion of C4d-negative ABMR in Banff'13 and elimination of suspicious ABMR (sABMR) with the use of C4d as surrogate for HLA-DSA in Banff'17. We aimed to evaluate the numerical and prognostic repercussions of these changes in a single-center cohort study of 949 single kidney transplantations, comprising 3662 biopsies that were classified according to the different versions of the Banff classification. Overall, the number of ABMR and sABMR cases increased from Banff'01 to Banff'13. In Banff'17, 248 of 292 sABMR biopsies were reclassified to No ABMR, and 44 of 292 to ABMR. However, reclassified sABMR biopsies had worse and better outcome than No ABMR and ABMR, which was mainly driven by the presence of microvascular inflammation and absence of HLA-DSA, respectively. Consequently, the discriminative performance for allograft failure was lowest in Banff'17, and highest in Banff'13. Our data suggest that the clinical and histological heterogeneity of ABMR is inadequately represented in a binary classification system. This study provides a framework to evaluate the updates of the Banff classification and assess the impact of proposed changes on the number of cases and risk stratification. Two alternative classifications introducing an intermediate category are explored.


Subject(s)
Kidney Transplantation , Biopsy , Cohort Studies , Graft Rejection/diagnosis , Graft Rejection/etiology , Humans , Isoantibodies , Kidney , Kidney Transplantation/adverse effects
19.
Cells ; 9(12)2020 12 17.
Article in English | MEDLINE | ID: mdl-33348629

ABSTRACT

BACKGROUND: When aiming to restore myelin tolerance using antigen-specific treatment approaches in MS, the wide variety of myelin-derived antigens towards which immune responses are targeted in multiple sclerosis (MS) patients needs to be taken into account. Uncertainty remains as to whether the myelin reactivity pattern of a specific MS patient can be predicted based upon the human leukocyte antigen (HLA) class II haplotype of the patient. METHODS: In this study, we analyzed the reactivity towards myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP) and proteolipid protein (PLP) peptides using direct interferon (IFN)-γ enzyme-linked immune absorbent spot (ELISPOT). Next, the HLA class II haplotype profile was determined by next-generation sequencing. In doing so, we aimed to evaluate the possible association between the precursor frequency of myelin-reactive T cells and the HLA haplotype. RESULTS: Reactivity towards any of the analyzed peptides could be demonstrated in 65.0% (13/20) of MS patients and in 60.0% (6/10) of healthy controls. At least one of the MS risk alleles HLA-DRB1*15:01, HLA-DQA1*01:02 and HLA-DQB1*06:02 was found in 70.0% (14/20) of patients and in 20.0% (2/10) of healthy controls. No difference in the presence of a myelin-specific response, nor in the frequency of myelin peptide-reactive precursor cells could be detected among carriers and non-carriers of these risk alleles. CONCLUSION: No association between HLA haplotype and myelin reactivity profile was present in our study population. This complicates the development of antigen-specific treatment approaches and implies the need for multi-epitope targeting in an HLA-unrestricted manner to fully address the wide variation in myelin responses and HLA profiles in a heterogeneous group of MS patients.


Subject(s)
HLA Antigens/genetics , Multiple Sclerosis, Relapsing-Remitting/pathology , Myelin Basic Protein/metabolism , Adult , Aged , Alleles , Case-Control Studies , Female , Genotype , HLA-DQ alpha-Chains/genetics , HLA-DQ beta-Chains/genetics , Haplotypes , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/genetics , Myelin Basic Protein/chemistry , Myelin Proteolipid Protein/chemistry , Myelin Proteolipid Protein/metabolism , Myelin-Oligodendrocyte Glycoprotein/chemistry , Myelin-Oligodendrocyte Glycoprotein/metabolism , Peptides/pharmacology , Young Adult
20.
J Am Soc Nephrol ; 31(9): 2193-2204, 2020 09.
Article in English | MEDLINE | ID: mdl-32764139

ABSTRACT

BACKGROUND: In kidney transplantation, evaluating mismatches of HLA eplets-small patches of surface-exposed amino acids of the HLA molecule-instead of antigen mismatches might offer a better approach to assessing donor-recipient HLA incompatibility and improve risk assessment and prediction of transplant outcomes. METHODS: To evaluate the effect of number of eplet mismatches (mismatch load) on de novo formation of donor-specific HLA antibodies (DSAs) and transplant outcomes, we conducted a cohort study that included consecutive adult kidney recipients transplanted at a single center from March 2004 to February 2013. We performed retrospective high-resolution genotyping of HLA loci of 926 transplant pairs and used the HLAMatchmaker computer algorithm to count HLA eplet mismatches. RESULTS: De novo DSAs occurred in 43 (4.6%) patients. Multivariable analysis showed a significant independent association between antibody-verified eplet mismatch load and de novo DSA occurrence and graft failure, mainly explained by DQ antibody-verified eplet effects. The association with DQ antibody-verified eplet mismatches was linear, without a safe threshold at which de novo DSA did not occur. Odds for T cell- or antibody-mediated rejection increased by 5% and 12%, respectively, per antibody-verified DQ eplet mismatch. CONCLUSIONS: Eplet mismatches in HLA-DQ confer substantial risk for de novo DSA formation, graft rejection, and graft failure after kidney transplantation. Mismatches in other loci seem to have less effect. The results suggest that antibody-verified HLA-DQ eplet mismatch load could be used to guide personalized post-transplant immunosuppression. Adoption of molecular matching for DQA1 and DQB1 alleles could also help to minimize de novo DSA formation and potentially improve transplant outcomes.


Subject(s)
Graft Rejection/etiology , HLA Antigens/immunology , Isoantibodies/blood , Kidney Transplantation/adverse effects , Adult , Aged , Female , HLA-DQ Antigens/immunology , HLA-DR Antigens/immunology , Histocompatibility Testing , Humans , Male , Middle Aged , Retrospective Studies , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL
...